Cosmological cross-correlations and nearest neighbour distributions
نویسندگان
چکیده
منابع مشابه
k-Nearest Neighbour Classifiers
Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...
متن کاملEnhanced Nearest Neighbour
Multimedia databases usually deal with huge amounts of data and it is necessary to have an indexing structure such that eecient retrieval of data can be provided. R-Tree with its variations, is a commonly cited indexing method. In this paper we propose an improved nearest neighbor search algorithm on the R-tree and its variants. The improvement lies in the removal of two hueristics that have be...
متن کاملIntroduction to k Nearest Neighbour Classification and Condensed Nearest Neighbour Data Reduction
Suppose a bank has a database of people’s details and their credit rating. These details would probably be the person’s financial characteristics such as how much they earn, whether they own or rent a house, and so on, and would be used to calculate the person’s credit rating. However, the process for calculating the credit rating from the person’s details is quite expensive, so the bank would ...
متن کاملFuzzy-Rough Nearest Neighbour Classification
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...
متن کاملOptimal weighted nearest neighbour classifiers
We derive an asymptotic expansion for the excess risk (regret) of a weighted nearest-neighbour classifier. This allows us to find the asymptotically optimal vector of nonnegative weights, which has a rather simple form. We show that the ratio of the regret of this classifier to that of an unweighted k-nearest neighbour classifier depends asymptotically only on the dimension d of the feature vec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2021
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/stab961